3 research outputs found

    Improved control strategy of DFIG-based wind turbines using direct torque and direct power control techniques

    Get PDF
    This paper presents different control strategies for a variable-speed wind energy conversion system (WECS), based on a doubly fed induction generator. Direct Torque Control (DTC) with Space-Vector Modulation is used on the rotor side converter. This control method is known to reduce the fluctuations of the torque and flux at low speeds in contrast to the classical DTC, where the frequency of switching is uncontrollable. The reference for torque is obtained from the maximum power point tracking technique of the wind turbine. For the grid-side converter, a fuzzy direct power control is proposed for the control of the instantaneous active and reactive power. Simulation results of the WECS are presented to compare the performance of the proposed and classical control approaches.Peer reviewedFinal Accepted Versio

    Synthesis and Characterization of ZnO Thin Film for Modeling the Effect of Its Defects on ZnO/Cu2O Solar Cell EQE

    Get PDF
    Zinc oxide (ZnO) is one of the best transparent conducting oxide (TCO) materials with a wide bandgap and good electrical and optical properties. Its low cost, nontoxicity and transparency in the optical region of the electromagnetic spectrum make it very promising candidate for solar cell applications. In this work, zinc acetate precursor was used to grow a ZnO thin film by using sol-gel spin-coating technique. The surface morphological study using scanning electron microscope (SEM) was carried out to confirm the growth pattern and crystal distribution. The optical properties, transmission (T), reflection (R), optical bandgap (Eg), refractive index (n), and extinction coefficient (k) were extracted and investigated to be used in the simulation of ZnO/Cu2O heterostructure solar cell, where ZnO thin film plays a double role: as the TCO window, as well as the emitter of the n-p junction. However, the solar cell showed weak external quantum efficiency (EQE) compared to those prepared by using zinc nitrate and diethyl zinc precursors. TCAD numerical simulation was used to clarify the origin of this weak EQE by taking into account two parameters. The first studied parameter is the root-mean-square interface roughness, σRMS, in Haze modeling approach, H, which describes how much of incident light is scattered at the interface. The second studied parameter is the density of defects in the ZnO bulk with continuous distribution of states in its bandgap similar to an amorphous semiconductor made of tail bands and Gaussian distribution deep level bands. Consequently, and by adjusting and investigating the effect of the σRMS and the constituents of the bandgap states, we were able to obtain a good agreement between simulated and measured EQE characteristics of the solar cell

    Adaptive Nonlinear Control Combined With Unscented Kalman Filter for Permanent Magnet Synchronous Motor Fed by AC/DC/AC Converter

    No full text
    In this paper, a adaptive non-linear controller is presented for permanent magnet synchronous motor (PMSM) sensorless drives. The adaptive non-linear controller is designed based on an input-output feedback linearization control technique. The unscented Kalman filter is used to estimate the speed, position and load torque. The PMSM is fed by an indirect power electronics converter. This indirect converter is controlled by a sliding mode technique that enables minimization of harmonics introduced by the line converter, as well as the control of the power factor and DC-link voltage. We study the robustness of the overall system using simulation for different operating modes and varied parameters
    corecore